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Semi-analytical Model of Charge Domain

Propagation and its Device Application
Jonathan P. Sculley, Student Member, IEEE, and P. D. Yoder, Senior Member, IEEE

Abstract— A semi-analytical theory is presented to describe the
growth and propagation of generalized charge carrier instabilities
in materials exhibiting negative differential drift velocity. This

theory is applied to study the operation of a GaAs-based device,
and its interaction with a resonant circuit. Results indicate
the significance of an unstable accumulation domain, and are
compared with Monte Carlo simulation.

Index Terms— Gunn effect, transferred electron devices, trav-
eling dipole domain, numerical simulation

I. INTRODUCTION

THE complexity associated with a rigorous mathematical

treatment of the space charge dynamics of negative differ-

ential resistance (NDR) devices, even in one spatial dimension,

is substantial [1]. Nevertheless, the models for describing the

Gunn effect advanced by Kroemer [1], Ridley [2], Hilsum

[3], and others have generated valuable physical insight. This

paper presents a new semi-analytic theory for the growth and

propagation of charge carrier instabilities in NDR devices,

and represents an extension of the seminal work of Ridley,

Kroemer and Hilsom in two important ways. First, it considers

arbitrary linear combinations of accumulation and depletion

domains, and is not restricted to pure dipole domains. Second,

the model makes no assumptions on the microscopic origin

of negative differential resistance. Although intervalley (k-

space) transfer is the mechanism of negative differential drift

velocity in many compound semiconductor materials, several

other mechanisms have also been proposed and observed.

Among these are negative effective mass[4], Bragg scatter-

ing[5], real space transfer in superlattice structures [6], and

more recently damped Bloch oscillation in certain wurtzite III-

N materials for transport along the crystallographic c-axis[7].

The model we present provides insight into the factors which

determine the growth and propagation of traveling domains at

the microscopic level, as well as the magnitude and frequency

of oscillations at the macroscopic level. The model will be

presented in one spatial dimension so as to facilitate analysis.

The ability of the model presented here to facilitate the study

of the temporal dynamics of pure accumulation domains is

of particular interest, as these domains are nearly planar in

geometry, and could potentially lead to a new class of high

speed oscillators with transit distances limited only by crystal

growth technology.
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1450407). J. Sculley and P. D. Yoder are with the School of Electrical and
Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
USA (e-mail:jonathan.sculley@gatech.edu; doug.yoder@gatech.edu).

II. CHARGE CARRIER INSTABILITIES

We have developed a system of differential equations to

describe the growth and propagation of charge domain insta-

bilities consisting of adjacent and unequal accumulation and

depletion layers. We consider a bulk-like active region in one

dimension from x = 0 to x = l. Analytical progress is

facilitated by the following set of assumptions:

1) A fixed and uniform background charge density q ND exists

throughout the active region,

2) Each domain consists of two adjacent subdomains, one of

which is characterized by planar electron accumulation and the

other by a volume of free electron depletion. The total charge

contained in each subdomain need not be equal in magnitude,

3) The accumulation subdomain faces the cathode, i.e. lies

upstream from the depletion subdomain, and

4) Electron dynamics are governed by a continuity equation

∂ jn

∂x
=q

∂n

∂ t
(1)

for which contributions to current density are dominated by

drift.

Focusing on the influence of drift and suppressing the

process of diffusion is common in the prior analytical treat-

ment of pure dipole domains [8, 9], and is consistent in

the present work with the assumption of ideal planar and

slab geometries for accumulation and depletion sub-domains,

respectively. These assumptions represent a balance between

the conflicting demands of capturing the essential physics and

the development of a simple model with which new insight

may be readily derived.

Under the above assumptions, the size and location of a

general domain may be characterized by three parameters: the

position of the interface between subdomains, x0, the sheet

density of electrons in the accumulation subdomain, NS , and

the width of the depletion subdomain, w, which extends from

x0 to x0 + w.

The electric field profile throughout the material can then be

characterized by three parameters: the constant electric field

on the left and right of the domain, EL and ER , respectively,

and the peak electric field, EM , located at x = x+
0 . The electric

field profile throughout the region can be described using the

piecewise continuous expression

E (x) =

⎧

⎪

⎨

⎪

⎩

EL x < x0

EM + (ER − EM ) x−x0
w x0 < x < x0 + w

ER x ≥ x0 + w

(2)

In this paper, we consider charge domains oriented with

the accumulation and depletion subdomains facing the cathode
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(upstream) and the anode (downstream), respectively. Because

the active region has finite length, calculation of the electric

field profile and diode current must be split into two separate

cases: x0 + w < l, where the domain has not reached the end

of the active region, and w ≡ l − x0, where the depletion

subdomain is incident upon the end of the active region at

the anode and is consumed as x0 approaches l. Analytical

expressions for EL , ER , and EM can be found through the

solution of Poisson’s equation subject to the Dirichlet bound-

ary conditions V (0, t) = 0 and V (l, t) = VG(t). Application

of the Ramo-Shockley Theorem [10] may be used to evaluate

the contribution to contact current from charge motion interior

to the device, with the contribution from displacement current

originating due to device bias variations considered through

an appropriate lumped capacitance. Analytical results are as

follows.

Case 1: x0 + w < l

EM =
q
ǫ

(

NDw2

2
− NS x0 − NDw (l − x0)

)

− VG

l
(3)

EL = EM +
q NS

ǫ
(4)

ER = EM +
q NDw

ǫ
(5)

IG = q A

(

NDvd (EL)
x0

l
+

NSvd (EM )

l

+ NDvd (ER)

(

1 −
x0 + w

l

))

(6)

Case 2: w = l − x0

EM =
− q

ǫ

(

NS x0 + 1
2

ND (l − x0)
2
)

− VG

l
(7)

EL = EM +
q NS

ǫ
(8)

ER = EM +
q ND(l − x0)

ǫ
(9)

IG = q A

(

NDvd (EL)
x0

l
+

NSvd (EM )

l

)

(10)

The function vd (E) represents the stationary electron drift

velocity as a function of electric field strength, and depends

strongly on material. For GaAs, for example, the velocity-field

relationship is well characterized by the equation proposed by

Chang and Fetterman [11]:

vd (E) =
−µE

√

1 +
(

E−E0
EC

)2

u(E − E0)

(11)

E0 =
1

2
(E P +

√

E2
P − 4E2

C) (12)

where EC = vs/µ, u(·) is the unit step function, vs is the

saturated drift velocity, µ is the electron low-field mobility, and

E P is the peak field. For the present work, the parameters vs =
105m/s, µ = 0.75 m2

V ·s , and E P = 3.2 × 105V/m have been

employed. Using these parameters, the velocity field profile

depicted in Figure 1 has been reproduced.

By integrating the continuity equation, the following differ-

ential equations can be formulated to describe the growth and

propagation of a general charge domain instability.

d NS

dt
= ND(vd (EL) − vd (EM )) (13)

dw

dt
= vd (ER) − vd (EM ) (14)

dx0

dt
= vd(EM ) (15)

III. DOMAIN STABILITY

Together, the coupled system of nonlinear equations (3)-

(5), (7)-(9), (12), and (13)-(15) may be used to gain insight

into the temporal dynamics of charge instabilities. The special

cases w = 0, NS = 0, and NS = NDw represent pure

accumulation domains, pure depletion domains, and pure

dipole domains, respectively. Even in homogeneous material

not subjected to external fields, small charge domains form

naturally through thermal fluctuations and plasma oscillation;

these excitations are generally short-lived, as the equilibrium

state is stable. However, when bias in excess of the thresh-

old for negative differential drift velocity is applied across

a volume of homogenous material, charge domains which

arise from even small fluctuations are initially unstable, and

may grow and propagate. The same holds true for charge

domains nucleated by abrupt gradients in doping concentration

and/or material composition. When adjacent accumulation and

depletion subdomains are oriented with the later facing the

anode, both subdomains can grow and propagate together.

The instability of small charge density fluctuations at bias

voltages above threshold is straightforward to demonstrate

using Eqns. (13) and (14). The magnitude of the electric field is

greater internal to the domain than external to the domain, and

therefore v (EL) and v (ER) are both greater than v(EM ) in the

regime of negative differential drift velocity. Consequentially,

the right hand sides of Eqns. (13) and (14) are both positive,

leading to growth in both NS and w. The instability of small

charge fluctuations at bias levels above threshold is therefore

a general result, and does not depend on the relative sizes of

the accumulation and depletion subdomains.

A. Traveling dipole domains

Consider a bulk-like region of thickness l in equilibrium.

If a voltage above the threshold for negative differential drift

velocity is suddenly applied across this region, a homogeneous

electric field appears across the region, such as at point ‘a’

in Figure 1. Should a fluctuation result in a small dipole

having sheet density Ns , the peak field within the dipole

is raised according to Eqn. (3), while the field outside the

dipole is lowered in accordance with Eqns. (4) and (5).

These fields internal and external to the dipole correspond

qualitatively to points ‘c’ and ‘b’ in Figure 1, respectively.

Because the velocity of electrons outside the dipole domain is

larger than the velocity of electrons within the dipole domain,

electrons upstream of the dipole rush towards the accumulation

sub-domain at a rate faster than the dipole itself can move

downstream, contributing to a growth of Ns , consistent with

Eqn. (13). Similarly, the width of the depletion sub-domain

increases as electrons downstream from the dipole move away
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Fig. 1. The magnitude of electron drift velocity is depicted as a function of
electric field strength, following Eqn. (11).

from it more rapidly than the dipole itself moves, consistent

with Eqns. (14) and (15). Because the electric field upstream

and downstream from a charge domain are identical (EL =
ER) in the special case of a pure dipole domain (Ns = NDw),

Eqn. (14) is no longer linearly independent of Eqn. (13), and

the equations of motion simplify to

d NS

dt
= ND(vd (EL) − vd (EM )) (16)

dx0

dt
= vd (EM ) (17)

with the relevant electric fields for the case x0 +w < l defined

as

EM =

q
ǫ

(

N2
S

2ND
− NSl

)

− VG

l
(18)

and

EL = EM +
q NS

ǫ
(19)

Because Ns = NDw, charges in the accumulation and

depletion subdomains always grow at the same rate while

the domain as a whole propagates. During this growth and

propagation, the peak field within the dipole, EM , continues

to increase, while the field outside the dipole (EL = ER)

continues to diminish. As a consequence of this and Eqn. (11),

the speed of the dipole domain diminishes as it propagates

and the dipole charge grows in magnitude. During this period

of growth and propagation, the diode current will always

exceed the differential charge swept out by the propagating

domain in a differential increment of time, as has been

previously reported [12]. Given sufficient distance l to travel,

the dipole domain may eventually reach a steady state for

which v (EM ) = v (EL) = v(ER), such as at points ‘d’ and

‘e’ in Figure 1. In this case, the steady state velocity may be

related to domain size through Eqn. (11) and Eqns. (3) and

(4), as shown in Figure 2.

Assuming the applied voltage is sufficient to establish a

steady state, the stability of these steady states depends on both

device length and doping level. Within the framework of Eqns.

(16)-(19), we note that Eqns. (18) and (19) are independent of

TABLE I

SIMULATION PARAMETERS.

x0 for pure dipoles, which decouples Eqn. (16) from Eqn. (17).

If a dipole domain reaches a steady state of size Ns0 by time

t0, but a fluctuation in charge �Ns ≪ N s0 occurs at time t0,

we are interested in the temporal evolution of �Ns (t − t0) for

t > t0, where Ns (t) = Ns(t0) + �Ns (t − t0). To first order,

Eqns. (16), (18) and (19) imply

�Ṅs = J�Ns (20)

Where J is the variation of Eqn. (16) with respect to Ns :

J =
δ
(

dNs

dt

)

δNs

= ND

(

dvd

d E

⌋

EL

∂ EL

∂Ns

−
dvd

d E

⌋

EM

∂ EM

∂Ns

)

(21)

The steady state of a traveling dipole domain is linearly stable

as long as the sign of the right hand side of Eqn. (21) is

negative, i.e. J < 0. Steady states involving small dipole

domains are unstable, as small fluctuations in domain size

influence the field internal to the domain to a far greater extent

than the field exterior to the domain. Positive fluctuations in

domain size tend to accelerate domain growth, while negative

fluctuations can lead to the domain’s decay. For a given

doping level and device length, Eqn. (21) implies that a

stable steady state can exist only once a traveling dipole

domain has achieved a certain critical size, and this critical

size can be directly related to the product of doping and

device length. This observation is quantified below in Figure 3.

Above the solid line in Figure 3, the Jacobian of Eqn. (21)

is negative, indicating the possibility for stable domains. The

applied voltage at which such dipole domains are stable is

then uniquely determined by Ns and l through integration of

Eqns. (18) and (19).

If a dipole domain reaches a stable steady state, it continues

to propagate at constant velocity according to Eqn. (14), but,

as Eqns. (13) and (14) would imply, does not exhibit further

growth and remains stable until it ultimately impinges on the

anode. The propagation speed of a stable steady state is a

monotonically decreasing function of the size of the domain,

as indicated in Figure 2. Whether a traveling dipole domain

actually reaches a stable steady state before impinging on

the anode depends therefore on initial conditions x0(t = 0),

NS(t = 0), the bias voltage, and device length l.
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B. Traveling accumulation domains

When the charge domain involves pure accumulation, ER

and EM are equal according to Eqn. (5), and w = 0. The

equations of motion therefore simplify to

d NS

dt
= ND(vd (EL) − vd (EM )) (22)

and

dx0

dt
= vd (EM ) (23)

with

EM =
− q

ǫ NS x0 − VG

l
(24)

and

EL = EM +
q NS

ǫ
(25)

With the application of bias in excess of the threshold for

negative differential drift velocity, Eqns. (24) and (25) dictate

that |EM | > |EL |. Small accumulation domains tend to grow

and propagate towards the anode according to Eqns. (22)

and (23), as vd (EL) > vd (EM ) . For sufficiently large Ns ,

Eqns. (22) and (23) indicate the existence of a steady state

solution characterized by propagation without growth. Again,

the condition for such a steady state is vd (EL) = vd (EM ),

such as at points “d” and “e” of Figure 1. In contrast to

the case of dipole domains, the electric field throughout the

device region depends not only on the size of the accumulation

domain, but also on its position. For this reason, Eqns. (22)

and (23) remain coupled, and determination of the stability of

steady state solutions is slightly more complicated.

We assume that a steady state accumulation domain of size

Ns0 at position x0(t0) has been reached at time t0, but a

fluctuation in charge �Ns ≪ Ns0 and/or position �x0 ≪ x0

occurs at time t0. We are interested in the temporal evolution

of the fluctuations �Ns (t − t0) and �x0 (t − t0) about the

steady state trajectory for t > t0, where Ns (t) = Ns(t0) +
�Ns (t − t0) and x0 (t) = x0 (t0) + vd (EM (t0)) · (t − t0) +
�x0 (t − t0). Linearization of Eqns. (22)-IV about the steady

state trajectory implies

[

�Ṅs

�ẋ0

]

=
[

δṄs

δNs

δṄs

δx0
δ ẋ0
δNs

δ ẋ0
δx0

]

[

�Ns

�x0

]

= J

[

�Ns

�x0

]

(26)

Because the Jacobian matrix J is not self-adjoint, its eigen-

values are complex. A steady state solution of Eqns. (22) and

(23) is linearly stable as long as the eigenvalues of J lie in

the left half of the complex plane. Although it is possible to

identify steady state conditions which are linearly stable, a

nonlinear stability analysis reveals that these steady states are

in fact unstable.

That traveling accumulation domains do not possess a

stable steady state may be appreciated with a few simple

considerations. A unique value of Ns is defined by Eqn.

IV for each of the steady state solutions admitted by Eqn.

(11), and it is possible, at least in principle, to establish

each steady state at an arbitrary position within the device,

i.e. at some point within range 0 < x0 (t0) < l. Because

EL x0 (t0) + EM (l − x0 (t0)) = −VG , there is only one value

of applied voltage VG which can support each such steady

state, given Ns(t0) and x0 (t0). When, due to the incremental

propagation of this accumulation domain at constant velocity

vd (EM (t0)), x0 is incrementally advanced with fixed Ns and

VG , the difference between EL and EM remains unchanged,

but their magnitudes increase as they become more strongly

negative. As a result, the right hand side of Eqn. (22) can no

longer remain zero, and the size of the accumulation domain

must change with time, which is inconsistent with a stable

steady state.

IV. DEVICE SIMULATION AND VALIDATION

In this paper, the semi-analytical model described in Section

II above has been applied to the structure shown in Figure 4,

studied by Tully [13], in which predominantly accumulation

domain instabilities rather than dipole domains were observed.

Tully’s GaAs-based structure consists of a uniformly doped

(ND = 1016cm−3) active region of length 1.575µm, below

which a thin heavily doped region serves as the anode.

Above the active region is a 0.1µm doping notch, for which

ND = 0.5 × 1016cm−3. Above the doping notch is a thin,

heavily doped cathode region. Dipole instabilities are typically

nucleated in Gunn diodes via step discontinuities in doping

density at notch discontinuities in material composition [14-

16].

In our model, we take the position of the nucleation site

to be x = 0. Due to the high doping density to the left of

the nucleation site and outside of the simulation domain, we

assume that the nucleation of charge domain instabilities, i.e.

the initial condition for each simulation, is established within a

few dielectric relaxation times – a time scale much shorter than

all other relevant time scales of the problem. Initial conditions

for NS and w were chosen to be 2.5 × 109cm−2 and 0.1nm,

respectively, consistent with prior Monte Carlo simulations

reported by Tully [13]. The charge instability is allowed to

grow and propagate until the domain is consumed the end of

the active region. A new charge domain is then initialized at

x0 = 0, and the cycle is allowed to repeat.

We apply our model to study the operation of the Gunn

diode depicted in Figure 4 integrated within the RLC resonant

circuit shown in Figure 5. Eqns. (13)-(15) must be solved

self-consistently with the following two additional differential

equations describing the capacitor voltage and inductor cur-

rent, respectively. All currents and voltages appearing in Eqns.

(27) and (28) are defined in the circuit diagram of Figure 5.

dV

dt
=

IL − V
R

− IG

C
(27)

d IL

dt
=

Vap − V

L
(28)

Numerical integration of the set of coupled differential equa-

tions was performed with a fifth order Runge-Kutta Dormand-

Prince approach, using a constant time step. The Dormand-

Prince method also allows the calculation of a fourth order

solution with minimal additional effort, and the difference

between these solutions is used to estimate the local inte-

gration error. The magnitude of this local integration error is
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Fig. 2. The steady state velocity of traveling dipole domains is a monoton-
ically decreasing function of domain size.

Fig. 3. Stability diagram for traveling dipole domains (NS = NDw). The
slight kink at intermediate ND l product is an artifact of the unit step function
in Eqn. (11).

accumulated at each time-step to provide an estimated global

integration error over the course of the simulation.

A time-step of 10−14 seconds was selected, as it is far less

than both the resonant RLC oscillator period and the minimum

domain propagation time.

TRLC = 2π
√

LC ≈ 12.5 ps (29)

Tprop ≥
l

vmax

≈ 7.5 ps (30)

Using this constant time step, the global integration error

was estimated to be less than 0.001% for all state variables

after 100 consecutive dipoles were allowed to propagate.

The relevant simulation parameters, including RLC circuit

parameters, were selected based on those of Tully [13] to

facilitate comparison. These parameters are presented in Table

1.

Fig. 4. Simulated GaAs based Gunn effect device structure.

Fig. 5. RLC oscillator circuit diagram. The diode on the left side represents
the Gunn diode governed by our model.

Fig. 6. Simulated voltage and current waveforms.

V. RESULTS AND DISCUSSION

Device and circuit-level results of our simulations are pre-

sented in the figures below. The variation of both microscopic

and macroscopic quantities are depicted as functions of time

over more than two complete cycles of domain propagation

from cathode to anode. The I (t) and V (t) waveforms shown

in Figure 5 correspond to the respective quantities indicated in

the oscillator circuit shown in Figure 4, and compare favorably

with the results of Monte Carlo simulation[13] shown in



6

Fig. 7. Current and voltage waveforms calculated by the Monte Carlo
simulation of Tully [13].

Fig. 8. Simulated electric field profile.

Fig. 9. Simulated accumulation domain position and accumulation domain
sheet density.

Figure 7.

The AC load output power efficiency was calculated to

be 6.35% with an AC power of 223 mW delivered to the

load resistor at a frequency of 78 GHz. These results are

quantitatively similar to the results obtained by the Monte

Carlo simulations of Tully [13] and van Zyl, Perold, and Botha

[17]. The simulated frequency is greater than the frequency

of 70 GHz reported by Tully, and the magnitude of the

voltage and current waveforms are slightly higher than that of

Tully’s simulation. This results in a higher AC output power

with a correspondingly higher efficiency. While having similar

magnitudes, the simulated current waveform has a DC shift

when compared to Tully’s results. In the simulation by van

Zyl, Perold, and Botha, a qualitatively similar negative DC

shift in the current is observed.

This simulation operates in a nearly pure accumulation layer

mode where NS ≫ wND . Therefore, only one line is plotted

for EM and ER in Figure 7 as their difference, which is

proportional to w, is imperceptible. The value of NS , which

is proportional to the difference between EL and EM , clearly

varies during each domain propagation.

As the accumulation domain space charge is large, the

difference between EM and EL will also be large. The speed

of the domain accumulation is essentially saturated after EM

has reached a certain magnitude, so the changes in EM have

almost no effect on the accumulation domain speed after the

initial growth. Therefore, the domain position appears linear

with respect to time in Figure 8. The depletion width is shown

to grow during each domain propagation, but this growth is

insignificant as w ≪ l and NDw ≪ NS at all points in

time. Therefore, the domain remains as an accumulation layer

throughout the simulation.

The balancing of charge in the initial domain conditions

significantly affects the domain’s propagation mode. If the

domain is initialized as a nearly pure accumulation layer,

the accumulation layer tends to grow while the small initial

depletion width does not significantly grow. However, if the

width of the depletion subdomain is sufficiently large, the

accumulation and depletion charge tends to stabilize and

propagate as a dipole domain until impinging upon the end

of the device.

For accumulation layers and dipole domains, the supply

voltage will determine whether the domain grows or is

quenched. At low supply voltages, the domain may exhibit

small initial growth followed by a complete quenching of the

domain. At high supply voltages, the domain’s accumulation

layer will not sufficiently grow which will result in decreased

current through the device. Above some threshold voltage, the

device current will be decreased to a point where it can no

longer sustain oscillation.

VI. SUMMARY

An original semi-analytic model has been presented to

describe the growth, propagation and collection of general

charge domain instabilities. This model has been validated

through comparison of mixed-mode device- and circuit-level

calculations of a Gunn oscillator with previously published

results based on more rigorous Monte Carlo simulation. The

study of the dynamics of pure accumulation domains enabled

by the new model may be used as a guide to the design of

future ultra-high speed devices with maximum transit distances

defined by crystal growth rather than lithography, irrespective

of the specific physical mechanism from which the negative

differential electron drift velocity derives. The present work

corroborates previously published Monte Carlo analysis which

suggests that charge domain instabilities other than pure dipole

domains may be responsible for the oscillation observed in

many GaAs-based Gunn effect devices.
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